Review

- What are the differences between mistakes and slips?
- What are the different types of slips?
- How do we tend to correct slips?
- What are forcing functions?
- How can UI design help to avoid errors?
- What are Norman's Seven Principles of Design?

DIS 1 — Jan Borchers

Perception

Our brains are wired to make sense of what we perceive.

Design Principles

DIS 1 — Jan Borchers

Gestalt Theory

- Köhler, Koffka, Wertheimer (Berliner Schule): "Gestaltpsychologie", 1912
- What do humans perceive as belonging together spatially or temporally?
- Basis of order in perception, movement, memory, thinking, learning, and acting

In-class Experiment

• Overall 100+ Gestalt laws

	B	
_media computing group	0100	

media computing group 🖁

Why Should I Care?

- Simple rules for visual (and auditory) UI design
- Hints how users will react to spatial and temporal order
- Good Uls respect and use Gestalt laws for understandability and intuitiveness

RTF Export Preferences
Bullete
Bows with no children
Rows with children expanded:
Rous with children collansed: h
Charkboxer
Checked: Z
Minimum width: 0.386 cm
Indeterminate:
Sparing
indent width per level: 0.635 cm
Space between columns: 0.317 cm
(?)
 A

Law I: Good Shape

- Perception has tendency towards remembering things as "good" / clear / simple shapes
- "Cognitive compression algorithm"!
- Easier shape \Rightarrow easier to remember

DIS 1 — Jan Borchers

DIS 1 - Jan Borchers

____media computing group

media computing group

Law 2: Proximity

- Spatially (or temporally!) close objects (events) are perceived as belonging together.
- Advantage: allows for order by position only, without other aides
- Helps to keep the interface simple

Law 4: Similarity

 $\begin{array}{c} \Delta \\ \Delta \\ \Delta \\ \Delta \\ 0 \\ 0 \\ 0 \\ \end{array}$

П

- Similar shapes appear as belonging together
 - Temporally?
- Different objects have higher information content (i.e., cognitive effort)
 - This can be A Good Thing or A Bad Thing
- Similar is not necessarily constant
 - Linearity, "elegant curve",...

DIS 1 - Jan Borchers

Law 3: Closure

- Closed shapes appear as belonging together
 - Temporally?
- Foundation of window metaphor
- But: Don't Overdo It.

– Jan Borchers	10		media	computing	group
Unread news in m	rec.humor.funny	1	article	+ 5	old
Unread news in m	rec.humor.funny.reruns	1	article	+ 5	old
Unread news in d	clari.living.columns.miss_manners	1	article	+ 1	old
Unread news in m	misc.taxes.moderated	98	articles	+ 383	old
Unread news in d	comp.dcom.telecom	35	articles	+ 74	old
Unread news in d	comp.dcom.modems	240	articles	+ 969	old
Unread news in a	alt.security	18	articles	+ 91	old
Unread news in d	comp.os.linux.announce	9	articles	+ 24	old
Unread news in d	comp.os.linux.development.apps	92	articles	+ 175	old
Unread news in d	comp.os.linux.development.system	115	articles	+ 187	old
Unread news in d	comp.os.linux.misc	400	articles	+ 924	old
Unread news in d	comp.os.linux.networking	301	articles	+ 560	old
Unread news in d	comp.os.linux.setup	264	articles	+ 1711	old
Unread news in d	comp.periphs.printers	5	articles	+ 839	old
Unread news in d	comp.protocols.kerberos	16	articles	+ 29	old
Unread news in d	comp.security.announce	2	articles	+ 0	old
Unread news in d	comp.security.gss-api	2	articles	+ 2	old
Unread news in d	comp.security.misc	36	articles	+ 60	old
Unread news in d	comp.security.unix	94	articles	+ 105	old
Unread news in d	comp.windows.x.announce	2	articles	+ 2	old
Unread news in d	comp.windows.x.apps	4	articles	+ 22	olo
Unread news in g	gnu.emacs.bug	15	articles	+ 31	old
Unread news in r	news.announce.newgroups	18	articles	+ 5	old
Unread news in r	news.software.b	2	articles	+ 7	old
Unread news in r	news.software.nntp	90	articles	+ 90	old
Unread news in r	news.software.readers	42	articles	+ 163	old
Unread news in s	shore.sys	1	article	+ 5	old
Unread news in s	shore.news	1	article	+ 2	old
Unread news in a	alt.sources	1	article	+ 5	old
Unread news in a	alt.source-code	1	article	+ 1	old

3	
	Operations apply to current selection or cursor position
	Quit Read Next Prev Catch up Subscribe Unsubscribe Goto group All groups
	Rescan Prev group List old Select groups Move Exit Checkpoint Gripe Post
	Post & Mail

Law 5: Continuity

- A.k.a. "Law of the Good Curve"
- Continuous shapes appear as belonging together
 - Temporally?
- Example: music

DIS 1 - Jan Borchers

Law 7: Common Fate

13

- A.k.a. "Law of Common Movement"
- Animated objects within a static environment appear as a group
- By-Law: Animation has a very strong effect in UI design
 - Here: Blinking in sync groups the items

Law 6: Experience

- We tend to "file" new things into categories we already know
- Uses existing knowledge, thereby saving learning effort and memory
- Foundation for the success of metaphors in UI design
- Analog to real-world models
- E.g., desktop metaphor

Information Content in UIs

19

- Basic unit of information: bit
- Toggle button:
 - 2 states: $\square \ \blacksquare \ \rightarrow \log_2(2) = 1 \text{ bit}$
- Single digit
 - 10 states: 0...9 $\rightarrow \log_2(10) = 3.3$ bits
- Single letter, upper- and lowercase, U.S.:
 - 52 states: a...z | A...Z $\rightarrow \log_2(52) = 5.7$ bits

Information Content in UIs

- Analog scales (reading = estimate)
 - Unmarked scale (experiment)
 3 bits (8 different positions differentiable)
 - Audio pitch, volume, salt content
 Pitch 2.5 bits (But: with perfect pitch 5–6 bits)
 Volume 2 bits
 Saltiness 1.8 bits

Analog or Digital?

- Example: speedometer in the car
- Analog displays (scales, ...)
 - Quick estimate possible, range limits visible
 - Easy to detect trends
 - · But: reading time increases linearly with number of significant digits
- Digital displays (digits, ...)
 - Reading time ~ constant up to 3 4 digits
 - But; hard to estimate quickly, trends hard to detect, limits invisible without external labeling

DIS 1 - Jan Borchers

Software Prototyping: **On-Screen Storyboards**

21

- Scripted simulations
- Using media tools such as PowerPoint or Photoshop layers
- More potential for interactivity:
 - Scene transition by simple input, timing, animation
- Prototype with slightly more vertical depth
- Use as click-through prototype or for pitching
- Pro: looks real, good for non-standard Uls, no programming

23

• Con: simulation fails when script is not followed

Theory Practice \checkmark Models of interaction **√**Sketching \checkmark Affordances, mappings, ✓ User observation constraints, types of knowledge, errors \checkmark Iterative design \Rightarrow Design principles

- Human cognition and performance
- History and vision of HCI
- ⇒Prototyping
- \Rightarrow Ideation
- User study and evaluation

media computing group

media computing group

In-Class Demonstration: Personal Orchestra Prototype

22

- Alternative to sequential interaction scripts
- Using Photoshop layers to simulate
- Highlighting menu options
- Moving to different screens
- Photoshop layers can do some magic
- Normally your Screenshot Prototype will look less polished

24

• This example turned out to also become our final graphical layout

DIS 1 - Jan Borchers

Prototyping Tools: Animation Apps

27

- Can even become final product
 - Virtual Vienna, Flash web content....
- Distribution usually fairly easy
 - Free player apps
- But: Large designs become hard to manage
 - Virtual Vienna example

Prototyping Tools: Animation Apps

- Usually implement timeline metaphor
- Good for intricate animations
- Pixel-based (Adobe Director) Maximum control over appearance
- Vector-based (Flash) Smaller files, editable objects
- Powerful when extended with scripts
- But: Scripting languages are clumsy by CS standards
- May allow for integration of non-standard hardware and other OS features (Director Xtras,...)

24

• Example:Virtual Vienna

DIS 1 - Jan Borchers

media computing group

Property

inspector

Library

Stage

Timeline

Prototyping Tools: Web

- DHTML = HTML + JavaScript, etc.
- Natural choice for web interface design
 - Can become final product
- Ubiguitous
- Many tools (Dreamweaver, FrontPage, ...)
- Cleartext format
- Viewable in any browser (in theory...), over the net
- But: No precise look & feel (nature of the web)

Demo: Prototyping Interaction with Javascript

- Modern Javascript library allows prototyping the user interaction quickly
- script.aculo.us
- Implementation of common animations and user interactions
- Convenience \$() function to access DOM elements (Prototype framework)
- Use your web browser as the IDE

Prototyping Tools: Rapid Development Environments

- VisualBasic,Tcl/Tk, etc.
- Good for standard GUIs (create standard look & feel)
- Often become final product
- Partly interpreted
 - Quick development cycle, but potential performance issues

Prototyping Tools: Rapid Development Environments

- Distribution: OK
 - Not always cross-platform
 - May require specific runtime environment
- "Programming for the rest of us"
 - End-user programming
 - Empowers users
 - E.g., Automator in Mac OS X

User Interface Builders

- Graphical/textual tools to define UI of real software application
- Usually part of integrated development environment (IDE)
- Pro:
 - Finished design can be used for final implementation
 - Real look & feel
 - Vertical functionality can be added easily
- Con:
 - Limited to I window system and its toolkit (windows, buttons, ...)

35

Prototyping Tools:

- Example: MAX/MSP
 - Multimedia development environment
 - Originally for MIDI applications
- Extended to handle graphics, audio, and video
- Build applications by connecting "patches" that process incoming data

pitch value as integer

(60 = middle C)

- Very helpful for specific type of applications MIDI/audio/video processing, interactive music systems
- Can be used for end products (WorldBeat)
- Distribution: Mac and Windows, free player pd for Linux

Untitled1

automatically generates note-on event

makenote 63 100 with volume (velocity) value 63, and note-off event 100ms later

as integer (63 = 50%)

velocity value of note-on event

formats pitch and velocity values into MIDI

note-on and note-off commands sent to an externally connected MIDI device (or the built-in software synthesizer of the OS)

DIS 1 — Jan Borchers _

Example: Interface Builder in Xcode

media computing group

- Create UIs for Mac OS X and iOS applications
 - Design static layout, e.g., position of a button in a window
 - Connect dynamic behavior, e.g., connect a button to an action method in a class

36

- UI can be tested without compiling or writing any code
- Suggests a more user-centered implementation process
 - Start with the UI, not the application functionality
 - IB generates source code skeleton that can then be filled in
 - IB uses special constants to include hints about outlets and actions in the source code

Video Prototyping

- Visualize the behavior of a system
- Videotape short scenes of the user interacting with the system
- Cut together to tell the story
- Great for envisioning futuristic system
- Example: Sun's Starfire, Apple's Knowledge Navigator

Use camera angle instead of implementing difficult interaction

Starfire Prototyping Guideline

- Continuously question if assumptions are realistic within 10-year timeframe
- Iterative nature, like any other prototype
- Include things that go wrong
- Avoid impossible hardware designs
- Design interface first, then decide film scenes based on budget
- E.g., Mouse, voice, reverse angle much cheaper than gesture and pen

Discovering social issues during prototyping

DIS 1 — Jan Borchers

Styles of Thinking

- When thinking about a problem, we try to do too much at once
- Emotion, information, logic, hope, creativity,...
- \Rightarrow Instead:Think in *one* style at a time!
- Maximizes sensitivity of the brain in that direction
- Everybody has their own preferred styles of thinking
 - Correlated with personality, training, professional background, role, situation,...
- When people think in different styles, they argue
- \Rightarrow Parallel thinking:
- Let everybody think in the same style for a while
- Then move to the next style of thinking, to cover all styles

Six Thinking "Hats" (Styles)

Ideation

Paper Blood Objective, facts and figure Intuition, gut feeling, em

Growing Grass Creativity, new ideas

47

media computing group

Six Thinking Hats

46

- Use hats to refer to thinking styles instead of people
 - "That was good black hat thinking; now let's put the yellow hat on."
 - X "You are too critical. You should see the benefits of this."
 - X "You are a black hat!"
- When to use which hat?
- Preset: Determine hat sequence before meeting
- Evolving: Determine next hat on-the-fly (not for beginners)

DIS 1 — Jan Borchers

48

DIS 1 — Jan Borchers

DIS 1 — Jan Borchers

Six Thinking Hats Guideline

- Only moderator can trigger hat changes
- Short time per hat (I min per participant)
 - Extend when new things come up --- do not limit creativity
 - Red hat: Keep time short. Make statements as definite as possible.
- Example sequence

DIS 1 - Jan Borchers

- Blue: organize the meeting and hats
- Red (if there is a strong preexisting feeling): let people lay down emotional burden
- White: bring everyone up-to-date with information
- First Yellow, then Green, and then Black (benefits motivate people to overcome difficulties, get the ideas, criticize the ideas)
- White: assess the idea against existing information
- Blue: conclude and summarize
- Red: reflect on thinking performance

Your DISI Project

- Theme: "You make me want to be a better person"
 - Interactive system ⇒ persuades users ⇒ behavior change ⇒ improve quality of life
- Three directions
- Go green
- Go healthy
- Go social
- Challenge: target users must not be university students between 20–30 years age group
 - Maximum grade without accepting the challenge: 2.0
 - Maximum grade with the challenge: 1.0
 - Groups of 4–6

DIS 1 - Jan Borchers

media computing group

Go social: help others Image: http://www.flickr.com/photos/yourdon/2906764434

Brainstorming An Initial Design Technique

- Goal: Collect as many ideas on a given topic as possible
- Quantity, not quality; include crazy ideas
- Go for a certain number of ideas, say, 100
- Defer judgment, don't criticize or argue (no black hat)
- Instead, leapfrog on each other's ideas (green hat)
- Limit to 5–10 minutes
- Relax, have fun, invite good brainstormers
- Scribe collects ideas visible for all
- Trick: Cross-pollination who-what-where

60

media computing group

In-Class Exercise: Brainstorming

- Project Theme: "You make me want to be a better person"
- Brainstorm on
 - What behaviors could change to improve quality of life?
 - How to persuade users to change?

Structuring Brainstorms: Concept Mapping

- Used since 1500s by Spanish monks
 - Mind Mapping trademarked by Tony Buzan in 70's
- Uses both brain sides, structures note-taking for overview, planning, learning... with a visual "gestalt"
 - Use A3 landscape, subject in middle, aspects on branches, subtopics on subbranches (software?)
- Connect additional relationships with arrows
- Use images/icons for keywords where they work
- Use color for branches & connections (after pencil version becomes stable)
- Grows over time, combine individual maps

- Gestalt laws allow us to leverage human perception in visual layout design
- Different software prototyping tools support different purpose of prototyping
- Six Thinking Hats and brainstorming allow early design ideas to be explored effectively

media computing group

DIS 1 - Jan Borchers